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Abstract
We show strong evidence for the absence of a finite-temperature spin glass
transition for the random-bond Ising model on self-dual lattices. The analysis
is performed by an application of duality relations, which enables us to derive
a precise but approximate location of the multicritical point on the Nishimori
line. This method can be systematically improved to presumably give the
exact result asymptotically. The duality analysis, in conjunction with the
relationship between the multicritical point and the spin glass transition point
for the symmetric distribution function of randomness, leads to the conclusion
of the absence of a finite-temperature spin glass transition for the case of
symmetric distribution. The result is applicable to the random-bond Ising
model with ±J or Gaussian distribution and the Potts gauge glass on the square,
triangular and hexagonal lattices as well as the random three-body Ising model
on the triangular and the Union-Jack lattices and the four-dimensional random
plaquette gauge model. This conclusion is exact provided that the replica
method is valid and the asymptotic limit of the duality analysis yields the exact
location of the multicritical point.

PACS numbers: 64.60.A−, 75.10.Nr, 05.70.Fh

1. Introduction

Properties of finite-dimensional spin glasses are still under active current investigations after
30 years since mean-field analyses of the basic model [1, 2]. The difficult problem of whether
or not the mean-field predictions apply to realistic finite-dimensional systems is still largely
unsolved. One of the outstanding problems is the existence or absence of the spin glass phase.
Most of the current investigations into this problem are carried out using numerical methods
[3–5].

1751-8113/09/332001+10$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/33/332001
mailto:mohzeki@stat.phys.titech.ac.jp
http://stacks.iop.org/JPhysA/42/332001


J. Phys. A: Math. Theor. 42 (2009) 332001 Fast Track Communication

Two typical spin glass models have been examined extensively, the Gaussian and ±J

Ising models. In three dimensions, researchers have arrived at the consensus that there are
finite-temperature spin glass transitions in both models. On the other hand, in two dimensions,
numerical investigations show evidence that there would be no finite-temperature spin glass
transition in both models [6–14]. Unfortunately, no reliable analytical evidence for the problem
of the existence or absence of the spin glass phase in finite dimensions has been established.

Very little systematic analytical work for finite-dimensional spin glasses exists. An
exception is a technique based on the gauge symmetry to derive the exact value of the internal
energy, a rigorous upper bound of the specific heat, several sets of rigorous inequalities and
exact relations in a special subspace, known as the Nishimori line [15, 16]. In the present
study, we develop an argument by the gauge symmetry in conjunction with the duality and the
replica method to study the problem whether or not a finite-temperature spin glass transition
exists in two dimensions. We analyse the problem of the spin glass transition point for the
±J Ising model and the Gaussian Ising model on self-dual lattices by means of the duality
[17, 18]. The theory is applicable directly to the square lattice, but the triangular and hexagonal
lattices can also be reduced to be self-dual using the duality in conjunction with the star–triangle
transformation [19]. In the present study, we arrive at the conclusion that no finite-temperature
spin glass transition exists in the symmetric distribution of randomness, for example p = 1/2
for the ±J Ising model. The result is justified under the validity of the replica method. It
should also be remembered that the prediction of the duality method for the transition point
is expected to be exact only in the asymptotic limit of s large cluster size in the sense we shall
define in the following sections.

This paper is organized as follows. In the following section, we recall the basic
formulations of the duality in spin glasses with the replica method and the relation derived
by the gauge symmetry to set a stage to show the absence of a spin glass phase. We develop
an analytical argument to derive our result in section 3. In this section, we show the limit of
applicability of the present result. The final section is devoted to conclusion and discussions.

2. Duality and gauge symmetry

Let us review several known facts in the present section to fix the notation and prepare for
the developments in the following section. The following arguments are applicable to several
spin glass models on self-dual lattices as shown in figure 1. We take the ±J Ising model
on the square lattice as an example here for simplicity. It is straightforward to generalize
the following arguments to other spin glass models as will be explained in the following
section.

2.1. ±J Ising model

The Hamiltonian of the ±J Ising model is given by

H = −
∑
〈ij〉

JijSiSj , (1)

where Si is the Ising spin taking ±1 and Jij (= ±J ) denotes the quenched random coupling.
The summation is taken over nearest neighbouring pairs of sites. The partition function with
fixed randomness is

Z(K, {τij }) =
∑
{Si }

∏
〈ij〉

eKτij SiSj , (2)
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Figure 1. Self-dual lattices. (A) Square lattice, (B) triangular lattice, (C) hexagonal lattice and
(D) hierarchical lattice. The triangular and hexagonal lattices become self-dual by means of the
duality combined with the star–triangle transformation [19]. Construction of a hierarchical lattice
starts from a single bond, and we iterate the process to substitute the single bond with the unit cell
of a complex structure [20–22].

where K = βJ is the coupling constant and τij (= ±1) is the sign of the random coupling Jij .
The distribution function of τij is

P(τij ) = pδ(τij − 1) + (1 − p)δ(τij + 1) = eKpτij

2 cosh Kp

, (3)

where we defined Kp by exp(−2Kp) = (1 − p)/p.

2.2. Duality and multicritical point of spin glasses

We review here the analysis of the location of the multicritical points by the duality in spin
glasses [23, 24]. The multicritical point is connected with a critical point for p = 1/2(Kp = 0)

by a relation introduced in section 2.4.
We apply the replica method to the ±J Ising model. The n-replicated partition function

after the configurational average is

Zn(K,Kp) = 1

(2 cosh Kp)NB

∑
{τij }

∏
〈ij〉

eKpτij Z(K, {τij })n, (4)

where n stands for the number of replicas. We generalize the duality argument to this
n-replicated ±J Ising model [23, 24]. For this purpose it is useful to define the edge Boltzmann
factor xk(k = 0, 1, . . . , n), which represents the configuration-averaged Boltzmann factor for
interacting spins with k antiparallel spin pairs among n nearest-neighbour pairs for a bond
(edge). The duality gives the relationship of the partition functions with different values of
the edge Boltzmann factor as given by

Zn(x0, x1, . . . , xn) = Zn(x
∗
0 , x∗

1 , . . . , x∗
n). (5)

The dual edge Boltzmann factors x∗
k are defined by the discrete multiple Fourier transforms of

the original edge Boltzmann factors, which are simple combinations of plus and minus of the
original Boltzmann factors in the case of Ising spins. Two principal Boltzmann factors x0 and
x∗

0 are the most important elements of the theory [23, 24]:

x0(K,Kp) = cosh(Kp + nK)

cosh Kp

, (6)

3
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Table 1. Comparison of the naive conjecture, improved method and numerical estimations for
self-dual hierarchical lattices [29].

pc (conjecture) pc (improved) pc (numerical)

0.8900 0.8920 0.8915(6)

0.8900 0.8903 0.8903(2)

0.8900 0.8892 0.8892(6)

0.8900 0.8895 0.8895(6)

0.8900 0.8891 0.8890(6)

x∗
0 (K,Kp) = (

√
2 cosh K)n. (7)

We extract these principal Boltzmann factors from the partition functions in equation (5) to
measure the energy from the all-parallel spin configuration. The result is written as, using the
normalized edge Boltzmann factors uj = xj/x0 and u∗

j = x∗
j /x∗

0 ,

x0(K,Kp)NB zn(u1, u2, . . . , un) = x∗
0 (K,Kp)

NB zn(u
∗
1, u

∗
2, . . . , u

∗
n), (8)

where zn(u1, . . .) and zn(u
∗
1, . . .) are defined as Zn

/
x

NB

0 and Zn/(x
∗
0 )NB respectively.

The duality identifies the critical point under the assumption of a unique phase transition.
The critical point is given as the fixed point of the duality transformation and is known to
yield the exact critical point for a simple ferromagnetic system on the square lattice [17, 18].
In order to obtain the multicritical point of the present replicated spin glass system, we
set K = Kp, which defines the Nishimori line (NL) on which the multicritical point is
expected to lie. Since zn is a multivariable function, there is no fixed point of the duality
relation in the strict sense which satisfies n conditions simultaneously, u1(K) = u∗

1(K),

u2(K) = u∗
2(K), . . . , un(K) = u∗

n(K). This is in sharp contrast to the non-random Ising
model, in which the duality is a relation between single-variable functions. We nevertheless
set a hypothesis that a single equation x0(K,K) = x∗

0 (K,K) gives the location of the
multicritical point for any replica number n [23–28]. The quenched limit n → 0 for the
equation x0(K,K) = x∗

0 (K,K) then yields

−p log p − (1 − p) log(1 − p) = 1
2 log 2. (9)

The solution to this equation is pc = 0.889 972 (≈0.8900).
This value of pc is very close to numerical results but shows small deviations on several

self-dual hierarchical lattices, for which numerically exact results can be derived, as in table 1
[29]. Such discrepancies may come from the following two facts. One is that the condition
x0(K,K) = x∗

0 (K,K) is different from the strict fixed-point condition and the other is that we
have considered only the quantity defined on a single bond, the principal Boltzmann factors
x0 and x∗

0 , which does not necessarily reflect the effects of frustration inherent in spin glasses.
The improvements with these points taken into account will be explained in the following
section, following [29, 30].

2.3. Improved method

As shown in figure 2, let us consider to sum over a part of the spins, called a cluster below, on
the square lattice to deal with the effects of frustration rather than a single bond considered in
the naive approach described in the previous section. Then, the set of clusters must be chosen
to cover the whole lattice under consideration as in figure 2, where two examples of the choice

4
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Figure 2. A cluster is the unit plaquette encircled by white spins. The spins marked black on the
original lattice are traced out to yield interactions among white spins in clusters.

of clusters are depicted. The partition function can now be expressed as a function of the
configuration of spins around a cluster (marked white in figure 2). The duality is written as

Z(s)
n

(
x

(s)
0 , x

(s)
1 , . . .

) = Z(s)
n

(
x

∗(s)
0 , x

∗(s)
1 , . . .

)
. (10)

The superscript s stands for the type of the cluster that one chooses. The quantity x
(s)
k is the

local Boltzmann factor including many-body interactions generated by the summation over
spins marked black in figure 2. We define the principal Boltzmann factors x

(s)
0 and their dual

x
∗(s)
0 as those with all spins surrounding the cluster in the up state. We assume that a single

equation gives the accurate location of the multicritical point for any number of n, similar to
the naive conjecture,

x
(s)
0 (K,K) = x

∗(s)
0 (K,K). (11)

This is the improved method to predict the location of the multicritical point with higher
precision than the naive conjecture.

The improved method for the ±J Ising model indeed has given results in excellent
agreement with the exact estimations within numerical error bars on several self-dual
hierarchical lattices as summarized in table 1 [29, 30]. In addition, recent numerical
investigations on the square lattice have given pc = 0.890 81(7) [31] and pc = 0.890 61(6)

[32], while the improved method has estimated pc = 0.890 725 by cluster 1 of figure 2 and
pc = 0.890 822 by cluster 2 [30]. If we deal with clusters of larger sizes, the improved
method should show systematic improvements toward the exact answer on the location of
the multicritical point. We use this property of the improved method to show that the spin
glass transition temperature would be zero on self-dual lattices, which means the absence of
a finite-temperature spin glass transition.

2.4. Relation between different replica numbers

Another important piece of information is the relation that the (n + 1)-replicated system with
p = 1/2 (Kp = 0) is equivalent to the n-replicated system on the NL [33].

After the gauge transformation and summation over gauge variables, the exponential in
equation (4) turns to a partition function with coupling Kp [15, 16]:

Zn(K,Kp) = 1

2Ns(2 cosh Kp)NB

∑
{τij }

Z(Kp, {τij }) · Z(K, {τij })n, (12)

where Ns is the total number of spins. It readily follows from this equation that Zn(K,K) and
Zn+1(K, 0) are essentially equal to each other:

2Ns(2 cosh K)NB Zn(K,K) = 2Ns+NB Zn+1(K, 0). (13)

5
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This result is quite general since we did not use the properties of a specific lattice. If there is a
singularity in the partition function Zn(K,K) on the left-hand side at some point (Kc,Kc) for
replica number n,Zn+1(K, 0) on the right-hand side has also a singularity at (Kc, 0) for n + 1.
According to this relation, it is sufficient to evaluate the location of the multicritical point in
the limit n → −1 in order to study whether or not there is a finite-temperature spin glass
transition for Kp = 0 in the quenched disorder system (n → 0). In the following section,
we will derive clear evidence for the absence of a finite-temperature spin glass transition for
the case of p = 1/2(Kp = 0) by estimating the location of the multicritical point in the limit
n → −1 by the improved method. The present argument is valid as long as the replica method
is reliable, in particular in the limit n → −1.

3. Absence of a finite-temperature transition for p = 1/2

In this section, we show that TSG = 0 for p = 1/2(Kp = 0) for an arbitrary cluster of the
improved method introduced in the previous section. Since the improved method would give
the exact result in the limit of infinitely large clusters because we take the full trace over all
spins in the system, except for the boundary spins, to give the exact partition function, we
expect our conclusion TSG = 0 to be valid not as an approximation but as the exact conclusion.

According to the improved method, the location of the multicritical point for the n-
replicated ±J Ising model is given by equation (11). The explicit expressions of two principal
Boltzmann factors are given as

x
(s)
0 (K,Kp) = 1

(2 cosh Kp)N
cl.
B

∑
{τij }

∏
〈ij〉

′eKpτij

⎧⎨
⎩

∑
{Si }

′ ∏
〈ij〉

′eKτij SiSj

⎫⎬
⎭

n

(14)

and

x
∗(s)
0 (K,Kp) = 1

(2 cosh Kp)N
cl.
B

∑
{τij }

∏
〈ij〉

′eKpτij

⎧⎨
⎩

1√
2

∑
{Si }

′ ∏
〈ij〉

′(eKτij + SiSj e−Kτij )

⎫⎬
⎭

n

(15)

≡ 1

(2 cosh Kp)N
cl.
B

∑
{τij }

∏
〈ij〉

′eKpτij Z∗(s)(K, {τij })n, (16)

where the prime on the summation denotes the condition that all the spins at the perimeter of
the cluster are up and the prime on the product represents the fact that the pairs are restricted
to those within the cluster. The quantity N cl.

B is the number of bonds in the cluster.
The principal Boltzmann factor x

(s)
0 is regarded as the n-replicated partition function of

the finite-size cluster after the configurational average, which is cut out of the self-dual lattice
under consideration:

x
(s)
0 (K,Kp) = 1

(2 cosh Kp)N
cl.
B

∑
{τij }

∏
〈ij〉

′eKpτij Z(s)(K, {τij })n. (17)

Gauge transformation and summation over gauge variables reduce the exponential factor in
this expression to a partition function of the cluster with coupling Kp [15, 16],

x
(s)
0 (K,Kp) = 1

2N cl.
s (2 cosh Kp)N

cl.
B

∑
{τij }

Z(s)(Kp, {τij })Z(s)(K, {τij })n, (18)

where N cl.
s denotes the number of spins inside the cluster under consideration.

6
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Figure 3. Dual pairs for cluster 1 and cluster 2. The same symbols are used as in figure 2.

The quantity Z∗(s) in the dual principal Boltzmann factor x
∗(s)
0 , in contrast, is not gauge

invariant as seen in equation (15). We here apply the duality transformation to Z∗(s) in the
cluster with all edge spins being up. We can then obtain another expression of Z∗(s) as [30]

Z∗(s)(K, {τij }) = 2N cl.
s −N cl.

B /2−1
∑
{Si }

dual∏
〈ij〉

eKτij SiSj (19)

≡ 2N cl.
s −N cl.

B /2−1Z
(s)
D (K, {τij }). (20)

The duality in the cluster allows us to rewrite Z∗(s)(K, {τij }) as the partition function
Z

(s)
D (K, {τij }) defined on the dual lattice of the cluster under consideration, denoted by the

subscript D, as in figure 3. It is noted that the total number of spins in the dual cluster is
given by the number of plaquettes in the original cluster, N cl.

p . Again, the technique of gauge
transformation with N cl.

p gauge variables is applicable to rewrite the dual principal Boltzmann

factor x
∗(s)
0 as

x
∗(s)
0 (K,Kp) = 2n(N cl.

s −N cl.
B /2−1)

2N cl.
p (2 cosh Kp)N

cl.
B

∑
{τij }

Z
(s)
D (Kp, {τij })Z(s)

D (K, {τij })n. (21)

Our task is thus to solve the following equation derived from x
(s)
0 = x

∗(s)
0 with the condition

K = Kp:

2n(N cl.
s −N cl.

B /2−1)

2N cl.
p −N cl.

s

∑
{τij }

Z
(s)
D (K, {τij })n+1 =

∑
{τij }

Z(s)(K, {τij })n+1. (22)

This equation gives the location of the multicritical point, which corresponds to the singularity
on the left-hand side of equation (13). To show the absence of a finite-temperature transition
for Kp = 0 in the quenched system (n → 0), we consider the limit of n → −1 in the above
equation, since the multicritical point for n → −1 is equivalent to the critical point for Kp = 0
in n → 0 due to relation (13). It should be noted that the two partition functions Z(s) and Z

(s)
D

do not have any singularity since they are given by the summation over spins of finite-size
systems.

Let us assume that there is a finite-temperature transition TSG = 1/KSG. Then the partition
functions Z(s) and Z

(s)
D on the original and dual clusters have some finite values. Equation (22)

then reduces to, in the limit of n → −1,

2N cl.
p −N cl.

B /2−1 = 1. (23)

7
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1 1 2
n

0.5

1.0

1.5

TSG

Figure 4. Behaviour of TSG as a function of the replica number n derived by x
(s)
0 = x

∗(s)
0 . The

dashed curve denotes the results by the naive conjecture and the solid curve represents those by
the improved method for cluster 1. The curve showing the points given by cluster 2 coincides with
that by cluster 1 in this scale.

The fact that N cl.
p 
= N cl.

B

/
2 + 1 for any finite-size cluster cut out of the self-dual lattices leads

us to the conclusion that equation (23) cannot be satisfied. In this sense, the spin glass
transition point of the ±J Ising model on a self-dual lattice goes to zero TSG → 0 as n → −1.
By taking the asymptotic limit of large clusters, we expect the result to be exact.

We show the behaviour of TSG as a function of n derived from x
(s)
0 = x

∗(s)
0 in figure 4 for

the naive conjecture and the improved methods. It is clearly observed that the value of TSG

depends on the degree of improvement for n > −1 but it is fixed to TSG at n = −1.
The above arguments are applicable as long as equation (22) can be established. In this

formulation, we used the replica method and the self-duality of lattices. The present results
are acceptable under the validity of the replica method and are applicable to self-dual lattices,
the square and several self-dual hierarchical lattices. Using the star–triangle transformation,
we can derive essentially the same relation as equation (22) for the triangular and hexagonal
lattices.

We can apply the above formulation to the Gaussian Ising model for J0 = 0, where J0

denotes the mean of the distribution of randomness because essentially the same improved
method works [30] and the same relation as equation (13) holds [33]. The same is true for
the q-state Potts gauge glass and the random Ising model with three-body interactions on
the triangular and the Union-Jack lattices. The multicritical point for these models can also
be given by the improved method [23, 24, 30, 36, 37]. For instance, the coefficient on the
left-hand side of equation (13) is slightly modified and written by the state number q instead
of 2 for the case of the Potts gauge glass. Also, the duality structure of the four-dimensional
random plaquette gauge model is exactly the same as the ±J Ising model on the square lattice,
and therefore the present analysis applies without change [25, 26].

4. Conclusion and discussions

We showed the absence of a finite-temperature spin glass transition for several spin glass
models with symmetric distribution of randomness in finite dimensions by using the duality
and gauge symmetry. This result is applicable to spin glass models with the Nishimori line,
the ±J Ising model, the Gaussian Ising model and the q-state Potts gauge glass on several

8
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self-dual lattices. We remark that the triangular and hexagonal lattices are included as the self-
dual lattices by means of the duality in conjunction with the star–triangle transformation. The
random Ising model with three-body interactions on the triangular and the Union-Jack lattices
and the four-dimensional random plaquette gauge model also have no finite-temperature spin
glass transition for the symmetric distribution of randomness.

Many researchers believe the absence of a finite-temperature spin glass transition for the
random-bond Ising model in two dimensions from numerical investigations. The present
analysis lays an analytical foundation of this expectation. Although a real-space
renormalization group calculation suggests a finite spin glass transition temperature for the
triangular lattice [38], we believe that the approximation involved there is too crude to be
qualitatively reliable.

We showed TSG = 0 for the symmetric distribution of randomness, considering an
arbitrary degree of the improved method. The conclusion derived in the present analysis is
exact under the validity of the improved method in the asymptotic limit of large clusters and
the replica method.

Our result is significant in the sense that this is the first analytical and systematic evidence
for the conclusion of the absence of a finite-temperature spin glass transition of the random-
bond Ising model in two dimensions and related systems with a symmetric distribution function
of randomness. We believe that further generalizations to other systems are worth the efforts.
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